On the Inf Sup Condition of Mixed Finite Element Formulations for Acoustic Fluids

نویسندگان

  • WEIZHU BAO
  • XIAODONG WANG
  • K. J. Bathe
چکیده

The objective of this paper is to present a study of the solvability, stability and optimal error bounds of certain mixed finite element formulations for acoustic fluids. An analytical proof of the stability and optimal error bounds of a set of three-field mixed finite element discretizations is given, and the interrelationship between the inf–sup condition, including the numerical inf–sup test, and the eigenvalue problem pertaining to the natural frequencies is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the ellipticity condition for model-parameter dependent mixed formulations

When establishing and analyzing model-parameter dependent mixed formulations, it is common to consider required ellipticity and inf-sup conditions for the continuous and discrete problems. However, in the modeling of some important categories of problems, like in the analysis of plates and shells, the ellipticity condition usually considered does not naturally hold, and the inf-sup condition ca...

متن کامل

Weighted Inf-sup Condition and Pointwise Error Estimates for the Stokes Problem

Convergence of mixed finite element approximations to the Stokes problem in the primitive variables is examined in maximum norm. Quasioptimal pointwise error estimates are derived for discrete spaces satisfying a weighted inf-sup condition similar to the Babuska -Brezzi condition. The usual techniques employed to prove the inf-sup condition in energy norm can be easily extended to the present s...

متن کامل

A 3d Conforming-nonconforming Mixed Finite Element for Solving Symmetric Stress Stokes Equations

We propose a 3D conforming-nonconforming mixed finite element for solving symmetric stress Stokes equations. The low-order conforming finite elements are not inf-sup stable. The low-order nonconforming finite elements do not satisfy the Korn inequality. The proposed finite element space consists of two conforming components and one nonconforming component. We prove that the discrete inf-sup con...

متن کامل

On Mixed Finite Element Formulations for Fluid-structure Interactions

In this thesis, mixed primitive variable based finite element formulations are developed to solve linear and nonlinear fluid-structure interaction problems involving incompressible (or almost incompressible) fluid models. The mixed elements are used according to the inf-sup condition. It is pointed out that along the fluid-structure interfaces, different coupling conditions can be used accordin...

متن کامل

A mixed finite element method for acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian description.

A nonstandard wave equation, established by Galbrun in 1931, is used to study sound propagation in nonuniform flows. Galbrun's equation describes exactly the same physical phenomenon as the linearized Euler's equations (LEE) but is derived from an Eulerian-Lagrangian description and written only in term of the Lagrangian perturbation of the displacement. This equation has interesting properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000